维修网

 找回密码
 注册

QQ登录

只需一步,快速开始

微信扫码 , 快速开始

查看: 309|回复: 1

经典运放电路分析

  [复制链接]

classn_11

发表于 2018-10-14 18:53:03 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有帐号?注册

x
运算放大器组成的电路五花八门,令人眼花瞭乱,是模拟电路中学习的重点。在分析它的工作原理时倘没有抓住核心,往往令人头大。为此本人特搜罗天下运放电路之应用,来个“庖丁解牛”,希望各位看完后有所斩获。
遍观所有模拟电子技朮的书籍和课程,在介绍运算放大器电路的时候,无非是先给电路来个定性,比如这是一个同向放大器,然后去推导它的输出与输入的关系,然后得出Vo=(1+Rf)Vi,那是一个反向放大器,然后得出Vo=-Rf*Vi……最后学生往往得出这样一个印象:记住公式就可以了!如果我们将电路稍稍变换一下,他们就找不着北了!
今天,教各位战无不胜的两招,这两招在所有运放电路的教材里都写得明白,就是“虚短”和“虚断”,不过要把它运用得出神入化,就要有较深厚的功底了。
虚短和虚断的概念
由于运放的电压放大倍数很大,一般通用型运算放大器的开环电压放大倍数都在80 dB以上。而运放的输出电压是有限的,一般在 10 V~14 V。因此运放的差模输入电压不足1 mV,两输入端近似等电位,相当于 “短路”。开环电压放大倍数越大,两输入端的电位越接近相等。
“虚短”是指在分析运算放大器处于线性状态时,可把两输入端视为等电位,这一特性称为虚假短路,简称虚短。显然不能将两输入端真正短路。
由于运放的差模输入电阻很大,一般通用型运算放大器的输入电阻都在1MΩ以上。因此流入运放输入端的电流往往不足1uA,远小于输入端外电路的电流。故 通常可把运放的两输入端视为开路,且输入电阻越大,两输入端越接近开路。“虚断”是指在分析运放处于线性状态时,可以把两输入端视为等效开路,这一特性 称为虚假开路,简称虚断。显然不能将两输入端真正断路。
在分析运放电路工作原理时,首先请各位暂时忘掉什么同向放大、反向放大,什么加法器、减法器,什么差动输入……暂时忘掉那些输入输出关系的公式……这些东东只会干扰你,让你更糊涂﹔也请各位暂时不要理会输入偏置电流、共模抑制比、失调电压等电路参数,这是设计者要考虑的事情。我们理解的就是理想放大器(其实在维修中和大多数设计过程中,把实际放大器当做理想放大器来分析也不会有问题)。
好了,让我们抓过两把“板斧”------“虚短”和“虚断”,开始“庖丁解牛”了。
反向放大器
1.jpg
" X/ D' T9 E8 W2 [# c9 o: L
. N' F5 t0 B) \* Z( a6 p2 @
图1
图一运放的同向端接地=0V,反向端和同向端虚短,所以也是0V,反向输入端输入电阻很高,虚断,几乎没有电流注入和流出,那么R1和R2相当于是串联的,流过一个串联电路中的每一只组件的电流是相同的,即流过R1的电流和流过R2的电流是相同的。
流过R1的电流:I1 = (Vi - V-)/R1 ………a
流过R2的电流:I2 = (V- - Vout)/R2 ……b
V- = V+ = 0 ………………c
I1 = I2 ……………………d
求解上面的初中代数方程得Vout = (-R2/R1)*Vi
这就是传说中的反向放大器的输入输出关系式了。
同向放大器
2.jpg
) ~' e5 C6 A2 M
& v0 |& J1 s: C' c
图2
图2中Vi与V-虚短,则 Vi = V- ……a
因为虚断,反向输入端没有电流输入输出,通过R1和R2 的电流相等,设此电流为I,由欧姆定律得: I = Vout/(R1+R2) ……b
Vi等于R2上的分压, 即:Vi = I*R2 ……c
由abc式得Vout=Vi*(R1+R2)/R2 这就是传说中的同向放大器的公式了。
加法器 1

/ G5 C" |1 D) s                               
登录/注册后可看大图
+ i$ X3 ^2 p+ L0 B
  N1 k/ p, r7 y8 `3 r1 @, p
图3

- {+ w5 k& y; X  p9 F
图3中,由虚短知: V- = V+ = 0 ……a
由虚断及基尔霍夫定律知,通过R2与R1的电流之和等于通过R3的电流,故 (V1 – V-)/R1 + (V2 – V-)/R2 = (V- –Vout)/R3 ……b
代入a式,b式变为V1/R1 + V2/R2 = Vout/R3 如果取R1=R2=R3,则上式变为-Vout=V1+V2,这就是传说中的加法器了。
加法器2

- f5 p2 ]. d1 t6 ?

6 d  f8 M% I# }& K- n2 M( J                               
登录/注册后可看大图
9 h0 b* Z6 F8 ^9 m' j

7 _( R) }+ U2 M' c/ W3 X: L! U+ P& d* }# {: {
图4
请看图4。因为虚断,运放同向端没有电流流过,则流过R1和R2的电流相等,同理流过R4和R3的电流也相等。
故 (V1 – V+)/R1 = (V+ - V2)/R2 ……a
(Vout – V-)/R3 = V-/R4 ……b
由虚短知: V+ = V- ……c 如果R1=R2,R3=R4,则由以上式子可以推导出 V+ = (V1 + V2)/2 V- = Vout/2 故 Vout = V1 + V2 也是一个加法器,呵呵!
减法器
7 r% X$ v6 l: C# x1 m7 h
) }0 h( N9 l: P. J6 x
                               
登录/注册后可看大图
5 a) }1 I* a0 u3 I9 c  h. t

5 o1 R2 z3 v; x) z7 b+ P/ I) r9 V' G% {$ d( x
图5
图5由虚断知,通过R1的电流等于通过R2的电流,同理通过R4的电流等于R3的电流,故有 (V2 – V+)/R1 = V+/R2 ……a
(V1 – V-)/R4 = (V- - Vout)/R3 ……b
如果R1=R2, 则V+ = V2/2 ……c
如果R3=R4, 则V- = (Vout + V1)/2 ……d
由虚短知 V+ = V- ……e
所以 Vout=V2-V1 这就是传说中的减法器了。
积分电路
5 `" r5 Y9 I, @3 w( T9 [8 x& Q
3.jpg
* E) A! g+ R* p4 U3 o
" |0 C. n) W/ L6 N* g

5 @- G- r4 Y  i( E, N1 W# ]
图6
图6电路中,由虚短知,反向输入端的电压与同向端相等,
由虚断知,通过R1的电流与通过C1的电流相等。
通过R1的电流 i=V1/R1
通过C1的电流i=C*dUc/dt=-C*dVout/dt
所以 Vout=((-1/(R1*C1))∫V1dt 输出电压与输入电压对时间的积分成正比,这就是传说中的积分电路了。
若V1为恒定电压U,则上式变换为Vout = -U*t/(R1*C1) t 是时间,则Vout输出电压是一条从0至负电源电压按时间变化的直线。
微分电路

$ Y- m9 {+ J8 X6 H- N( }5 \ 4.jpg 6 q4 E& R9 T, L

2 M$ m- O+ M% _
, h; Y3 a: U6 W+ K* d6 G* b
图7
图7中由虚断知,通过电容C1和电阻R2的电流是相等的,
由虚短知,运放同向端与反向端电压是相等的。
则: Vout = -i * R2 = -(R2*C1)dV1/dt
这是一个微分电路。
如果V1是一个突然加入的直流电压,则输出Vout对应一个方向与V1相反的脉冲。
差分放大电路
+ Q8 v# Q0 n0 U" _
( W' S6 U9 o, W
                               
登录/注册后可看大图

" z9 V' _4 v% H$ Y; Q
; l, Q1 Q" f0 @& B

' }: b7 {* Z; ~/ d3 j7 @. ~
图8
由虚短知 Vx = V1 ……a
Vy = V2 ……b
由虚断知,运放输入端没有电流流过,则R1、R2、R3可视为串联,通过每一个电阻的电流是相同的, 电流I=(Vx-Vy)/R2 ……c
则: Vo1-Vo2=I*(R1+R2+R3) = (Vx-Vy)(R1+R2+R3)/R2 ……d
由虚断知,流过R6与流过R7的电流相等,若R6=R7, 则Vw = Vo2/2 ……e
同理若R4=R5,则Vout – Vu = Vu – Vo1,故Vu = (Vout+Vo1)/2 ……f
由虚短知,Vu = Vw ……g
由efg得 Vout = Vo2 – Vo1 ……h
由dh得 Vout = (Vy –Vx)(R1+R2+R3)/R2 上式中(R1+R2+R3)/R2是定值,此值确定了差值(Vy –Vx)的放大倍数。
这个电路就是传说中的差分放大电路了。
电流检测
9 S/ N: h0 l2 {% o

  s1 J) d" p& \7 `0 F& S7 [  z! u                               
登录/注册后可看大图
& l, F& h( s2 Q0 L( b9 [6 e
+ T5 l- A# f$ p- Q/ ?6 e9 V
图9

$ K% Y1 H5 N1 q6 j  ?
分析一个大家接触得较多的电路。很多控制器接受来自各种检测仪表的0~20mA或4~20mA电流,电路将此电流转换成电压后再送ADC转换成数字信号,图九就是这样一个典型电路。如图4~20mA电流流过采样100Ω电阻R1,在R1上会产生0.4~2V的电压差。由虚断知,运放输入端没有电流流过,则流过R3和R5的电流相等,流过R2和R4的电流相等。故:
(V2-Vy)/R3 = Vy/R5 ……a
(V1-Vx)/R2 = (Vx-Vout)/R4 ……b
由虚短知: Vx = Vy ……c
电流从0~20mA变化,则V1 = V2 + (0.4~2) ……d
由cd式代入b式得(V2 + (0.4~2)-Vy)/R2 = (Vy-Vout)/R4 ……e
如果R3=R2,R4=R5,则由e-a得Vout = -(0.4~2)R4/R2 ……f
图九中R4/R2=22k/10k=2.2,则f式Vout = -(0.88~4.4)V,
即是说,将4~20mA电流转换成了-0.88 ~ -4.4V电压,此电压可以送ADC去处理。
注:若将图九电流反接既得 Vout = +(0.88~4.4)V,
电压电流转换检测
% l5 _2 a- U3 l7 P8 ?9 F9 D
5.jpg # z  M# O$ ~9 x, a. z# y

+ `" S# V8 N5 b. Z. |* [$ A, g2 C3 R+ d1 r- {2 J4 A
图10
电流可以转换成电压,电压也可以转换成电流。图十就是这样一个电路。上图的负反馈没有通过电阻直接反馈,而是串联了三极管Q1的发射结,大家可不要以为是一个比较器就是了。只要是放大电路,虚短虚断的规律仍然是符合的!
由虚断知,运放输入端没有电流流过,
则 (Vi – V1)/R2 = (V1 – V4)/R6 ……a
同理 (V3 – V2)/R5 = V2/R4 ……b
由虚短知 V1 = V2 ……c
如果R2=R6,R4=R5,则由abc式得V3-V4=Vi
上式说明R7两端的电压和输入电压Vi相等,则通过R7的电流I=Vi/R7,如果负载RL<<100KΩ,则通过Rl和通过R7的电流基本相同。
传感器检测

. W5 \9 s  i. r

: d% a$ W- p4 b# ~7 M                               
登录/注册后可看大图
8 L( ^$ A9 C8 r

6 Q# v6 S3 l6 r5 Z6 }
图11
; I' U) l+ m# ~8 [
来一个复杂的,图11是一个三线制PT100前置放大电路。PT100传感器引出三根材质、线径、长度完全相同的线,接法如图所示。有2V的电压加在由R14、R20、R15、Z1、PT100及其线电阻组成的桥电路上。Z1、Z2、Z3、D11、D12、D83及各电容在电路中起滤波和保护作用,静态分析时可不予理会,Z1、Z2、Z3可视为短路,D11、D12、D83及各电容可视为开路。由电阻分压知, V3=2*R20/(R14+20)=200/1100=2/11 ……a
由虚短知,U8B第6、7脚 电压和第5脚电压相等 V4=V3 ……b
由虚断知,U8A第2脚没有电流流过,则流过R18和R19上的电流相等。 (V2-V4)/R19=(V5-V2)/R18 ……c
由虚断知,U8A第3脚没有电流流过, V1=V7 ……d 在桥电路中R15和Z1、PT100及线电阻串联,PT100与线电阻串联分得的电压通过电阻R17加至U8A的第3脚, V7=2*(Rx+2R0)/(R15+Rx+2R0) …..e
由虚短知,U8A第3脚和第2脚电压相等, V1=V2 ……f
由abcdef得, (V5-V7)/100=(V7-V3)/2.2 化简得 V5=(102.2*V7-100V3)/2.2 即 V5=204.4(Rx+2R0)/(1000+Rx+2R0) – 200/11 ……g
上式输出电压V5是Rx的函数我们再看线电阻的影响。Pt100最下端线电阻上产生的电压降经过中间的线电阻、Z2、R22,加至U8C的第10脚,
由虚断知, V5=V8=V9=2*R0/(R15+Rx+2R0) ……a
(V6-V10)/R25=V10/R26 ……b
由虚短知, V10=V5 ……c
由式abc得 V6=(102.2/2.2)V5=204.4R0/[2.2(1000+Rx+2R0)] ……h
由式gh组成的方程组知,如果测出V5、V6的值,就可算出Rx及R0,知道Rx,查pt100分度表就知道温度的大小了。
6 M1 t( k( A0 E/ f8 a, ]+ [; i# Z

9 c+ R7 V  C9 F. e
[发帖际遇]: 泽明之星 无私奉献,奖励 1 贡献. 幸运榜 / 衰神榜

手机扫码浏览
  • ta_mind
    郁闷
    2018-10-25 10:06
  • classn_01: 5 classn_02

    [LV.2]偶尔看看I

    发表于 2018-10-25 10:30:42 | 显示全部楼层
    谢谢你的分享.分析得很透彻.
    [发帖际遇]: 明昊电子 被钱袋砸中进医院,看病花了 2 金钱. 幸运榜 / 衰神榜
    *滑块验证:
    您需要登录后才可以回帖 登录 | 注册

    本版积分规则

    QQ|申请友链|手机版|小黑屋|最新贴|维修网 ( 粤ICP备09047344号

    GMT+8, 2024-5-29 08:59 , Processed in 0.343164 second(s), 36 queries .

    Powered by Discuz! X3.4

    Copyright © 2001-2021, Tencent Cloud.

    快速回复 返回顶部 返回列表