本文描述了一种直接集成到芯片设计流程中的详细三维温度分析,介绍了这种温度分析如何帮助芯片设计师和架构师更好地掌握芯片内的温度梯度,以及温度梯度影响芯片性能的情况。 如今,集成电路的设计趋势正朝着在同一块芯片内集成越来越多的电路的方向发展。在诸如高速通道收发器、微控制器、汽车电子、智能电源芯片和无线产品等许多应用中,模拟电路和数字电路都被放置在同一个裸片上。将功率器件、高性能模拟电路和复杂数字电路在这样的混合信号设计中进行集成,会导致裸片中的功率密度增加,由于这些不同的电路会产生热量,这就会引发温度问题。 芯片架构设计师、电路设计师和布线设计师正面临着越来越大的压力,因为他们必须准确掌握其设计中的温度变化情况以及这些变化对电路性能和可靠性会带来怎样的影响。本文描述了一种直接集成到设计流程中的详细三维温度分析,介绍了这种温度分析如何帮助芯片设计师和架构师更好地掌握芯片内的温度梯度,以及温度梯度影响芯片性能的情况。 对温度梯度的现有理解 估计IC芯片结温的一般方法是利用精简封装模型,其中包括给定封装的最大结温、最大环境温度,最大允许功耗以及此封装的热阻(R?JA,junction to ambient)。不同的精简封装模型中可能会有几个热阻,但这类模型的应用都涉及到图1中所示的一个线性方程。
功率源的分布状态会导致结温变化,但精简封装模型无法捕获这种变化所造成的影响。通过使用单一的总功率数字,产生的结温被假定为单个(通常是最坏情况)数字。事实上,功率源是分散的,当考虑它们的综合影响时,会出现以下两个重要问题: (a)结温变化 [1] 器在某些离散时间点上进行交互。 将热分析集成进设计流程 描绘了一个模拟设计的设计环境。温度分析通过标准数据格式集成到设计流程中。设计数据被直接读入热分析引擎,然后象数字电路中常见的一样,从仿真数据或功率分析工具中直接读出功率消耗值。 热分析的输出用来更新单个器件以及连接区域的温度。一旦这些信息更新后,器件的功率和寄生值也就得到了修正。这一步骤牵涉到在网表(仿真格式和/或设计格式)和物理实例之间进行一致的名字映射。这种在电路分析和温度分析之间的电热循环用来捕捉热量对电路行为的影响。稳态和暂态问题都可以利用图4描述的流程加以解决。 集成电路尺寸缩小,集成度增高,而且同一块芯片上混合集成了模拟电路和数字逻辑电路,这一切都使由温度引起的设计问题不断增加。在设计阶段进行片上热分析的需求不断增长,并且这一需求正在得到认可。将热分析(利用热模型和电模型以及芯片的封装特性分析)加入标准设计流程就使设计师能够在设计早期检测并修复与热量相关的问题。热问题一旦检测出来之后,可以通过几种方式解决,例如布图规划调整或改进芯片封装。利用每个器件的温度以及温度梯度信息,设计师就能在流片之前确定其设计的性能和正确性,从而避免出现代价高昂的芯片失效和设计返工。 [5] |
|小黑屋|最新贴|维修网
( 粤ICP备09047344号 )
GMT+8, 2025-4-30 22:58 , Processed in 0.428327 second(s), 22 queries .
Powered by Discuz! X3.4
Copyright © 2001-2021, Tencent Cloud.