本文介绍了低压差线性稳压器(LDO)的基本原理及选用原则,并将其应用于开关电源设计之中。这种设计方案简化了开关电源的多路输出设计,减小了负载调整率,有效地抑制了电磁干扰(EMI),并加强了开关电源的过流保护功能。 电源是各种电子设备必不可缺少的组成部分,其性能的优劣直接关系到电子设备的技术指标及能否安全可靠地工作。目前常用的直流稳压电源分线性电源和开关电源两大类,由于开关电源内部关键元器件工作在高频开关状态,本身消耗的能量很低,开关电源效率可达80%~90%,比普通线性稳压电源提高近一倍,目前已成为稳压电源的主流产品。本文介绍一种应用低压差线性稳压器(LDO)优化开关电源的设计方案,并对该方案的可行性通过实验加以验证。 LDO的基本原理 低压差线性稳压器(LDO)的基本电路如图1所示,该电路由串联调整管VT、取样电阻R1和R2、比较放大器A组成。 图1:低压差线性稳压器基本电路。 取样电压加在比较器A的同相输入端,与加在反相输入端的基准电压Uref相比较,两者的差值经放大器A放大后,控制串联调整管的压降,从而稳定输出电压。当输出电压Uout降低时,基准电压与取样电压的差值增加,比较放大器输出的驱动电流增加,串联调整管压降减小,从而使输出电压升高。相反,若输出电压Uout超过所需要的设定值,比较放大器输出的前驱动电流减小,从而使输出电压降低。供电过程中,输出电压校正连续进行,调整时间只受比较放大器和输出晶体管回路反应速度的限制。 应当说明的是,实际的线性稳压器还应当具有许多其它的功能,比如负载短路保护、过压关断、过热关断、反接保护等,而且串联调整管也可以采用MOSFET。 LDO的选用原则 1.输入输出电压差 输入输出电压差是低压差线性稳压器最重要的参数。在保证输出电压稳定的前提下,该电压差越低,线性稳压器的性能越好。比如,5.0V的低压差线性稳压器,只要输入5.5V,就能使输出电压稳定在5.0V。 2.最大输出电流 用电设备的功率不同,要求稳压器输出的最大电流也不相同。通常,输出电流越大的稳压器成本越高。为了降低成本,在多只稳压器组成的供电系统中,应根据各部分所需要的电流值选择适当的稳压器。 2.提高开关电源的负载调整率 LDO是来稳定电源电压的专用芯片,目前有很多公司设计的LDO的负载调整率非常小。应用LDO可以大幅度地降低开关电源负载调整率。 3.有效滤除开关电源电磁干扰,减小纹波输出 开关电源的突出缺点是产生较强的EMI。EMI信号既具有很宽的频率范围,又有一定的幅度,经传导和辐射会污染电磁环境,对通信设备和电子产品造成干扰。如果处理不当,开关电源本身就会变成一个干扰源。LDO有较高的电源抑制比,且LDO是低噪声器件,因此应用LDO可以有效地滤除开关电源EMI,减小纹波输出。 4.为开关电源提供过流保护 尽管许多PWM控制芯片本身具有过流保护功能,但LDO的过流保护功能可以提升开关电源的安全系数。 试验分析 图3:开关电源负载调整率测试电路 下面通过以下两个实验来验证该方案的可行性: 1.测量负载调整率 实验电路如图3所示。由电子负载依次拉出0mA到400mA的电流,在每个负载点记录下开关电源的输出电压。测试数据经过处理,可以得出图4所示的图表。该图充分说明,LDO优秀的负载调整率已经被完全移植到开关电源上。换言之,LDO极大地提高了开关电源的负载调整率。 2.输出纹波的测量 分别在开关电源的LDO输入端和输出端接上示波器,可以得出图5所示的波形。其中Ch1是LDO入口处的输出波形,而Ch2是LDO出口处的输出波形,即开关电源的最终输出波形。 由上图可以看出,LDO有效地滤除了开关电源EMI信号,相对于搭建常规EMI过滤器来讲,应用LDO更简单可靠。 |
|小黑屋|最新贴|维修网
( 粤ICP备09047344号 )
GMT+8, 2025-5-23 14:24 , Processed in 2.907248 second(s), 22 queries .
Powered by Discuz! X3.4
Copyright © 2001-2021, Tencent Cloud.